Page courante: Miscellaneous /  Systèmes chaotiques / Abstract

Parcours « vulgarisation »

Suite

Précédent

Début / Fin

Parcours complet

Suite

Précédent

Début / Fin

Parcours « formel »

Suite

Précédent

Début / Fin

Abstract

Lorenz's, Rössler's and Moon's chaotic systems show common features as an aperiodic evolution and a strictly positive Lyapunov exponent. Moreover, sets of points called Poincaré sections have interesting properties. Studying these Poincaré sections enable calculating fixed points which are useful for controlling systems. Hence controlling methods involving slight perturbations keep their dynamical properties and maintain them on a cyclic trajectory. These methods have been applied using analytical calculations (for Hénon attractor) or numerical calculations (for Lorenz and Rössler attractors). Simulations allow to evaluate them and to realise a demonstrative interface.