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[1] We apply machine learning algorithms to perform sequential aggregation of ozone
forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the
modeling system Polyphemus. The ensemble simulations are obtained by changes in the
physical parameterizations, the numerical schemes, and the input data to the models.
The simulations are carried out for summer 2001 over western Europe in order to forecast
ozone daily peaks and ozone hourly concentrations. On the basis of past observations and
past model forecasts, the learning algorithms produce a weight for each model. A
convex or linear combination of the model forecasts is then formed with these weights.
This process is repeated for each round of forecasting and is therefore called sequential
aggregation. The aggregated forecasts demonstrate good results; for instance, they always
show better performance than the best model in the ensemble and they even compete
against the best constant linear combination. In addition, the machine learning algorithms
come with theoretical guarantees with respect to their performance, that hold for all
possible sequences of observations, even nonstochastic ones. Our study also demonstrates
the robustness of the methods. We therefore conclude that these aggregation methods are
very relevant for operational forecasts.

Citation: Mallet, V., G. Stoltz, and B. Mauricette (2009), Ozone ensemble forecast with machine learning algorithms, J. Geophys.

Res., 114, D05307, doi:10.1029/2008JD009978.

1. Introduction

[2] The large uncertainties in air quality forecasts have
lately been evaluated with ensemble approaches. Besides
the propagation of input data uncertainties with Monte
Carlo simulations [e.g., Hanna et al., 1998; Beekmann
and Derognat, 2003], multimodel ensembles have been
introduced in order to account for the uncertainties in
the chemistry-transport models formulation [Mallet and
Sportisse, 2006b; van Loon et al., 2007]. In this case,
the models are based on different physical parameterizations,
different numerical discretizations and different input data.
Each model in the ensemble brings information that may be
used to improve the forecasts.
[3] A class of methods linearly combines the ensemble

members in order to produce a single forecast, hopefully
more skillful than any individual model of the ensemble.
Henceforth, we refer to these methods as aggregation
methods. The simplest example is the ensemble mean,
which usually brings limited improvement, if any (depend-
ing on the target), compared to the best model in the

ensemble [McKeen et al., 2005; van Loon et al., 2007].
Other methods associate weights to the models, using the
performance of the models against the observations in the
past. Pagowski et al. [2005, 2006] applied linear regression
methods, which resulted in strong improvements. The
weights were computed per observation station, which did
not enable the forecast of 2D fields of concentrations. Also
dynamic linear regression is usually not a robust method
[West and Harrison, 1997]. In the work of Mallet and
Sportisse [2006a], the weights only depend on time (so, not
on the location) and were computed with least squares
optimization like in the work of Krishnamurti et al.
[2000]. This led to significant improvements in the forecasts.
The method seemed quite robust for ozone forecasts, but it is
an empirical method, without any theoretical guarantee.
[4] In this paper, we apply some new methods developed

by the machine learning community. Just like the ones
discussed above, they perform sequential aggregation on
the basis of ensemble simulations and past observations.
These machine learning methods come with a strong
mathematical background [Cesa-Bianchi and Lugosi,
2006]. They provide theoretical bounds on the discrepancy
between the performance of some best model combinations
and the performance of the aggregated forecast, for any
possible sequence of observations. Hence, they can provide
a reliable and robust framework for ensemble forecasting.
The basis of learning algorithms and more detailed explan-
ations for two algorithms and their variants are addressed in
section 2.
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[5] We rely on the same ensemble of ozone forecasts as
given by Mallet and Sportisse [2006a]. This ensemble was
built with the Polyphemus system [Mallet et al., 2007b] and
is made of 48 models run during 4 months in 2001 and
over Europe. The experiment setup is briefly explained in
section 3.
[6] The learning algorithms are applied to ozone daily

peaks and to ozone hourly concentrations. Their results are
reviewed in section 4. The analysis addresses issues like the
robustness of the forecasts and the ability of the methods to
capture extreme events.
[7] Machine learning aims at designing and developing

algorithms that can be implemented on computers to make
some automatic decisions or predictions. (Here, we are
interested in predicting the concentrations of a pollutant.)
One way of making good decisions is of course to consider
a statistical procedure based on a preliminary estimation
step. However, not all machine learning algorithms rely on
the estimation of statistical parameters. The sequential
aggregation techniques described in this paper are exam-
ples of such machine learning algorithms not resorting to
estimation.
[8] Quite different machine learning techniques have

already been intensively used in atmospheric sciences, and
in particular, neural networks [see, e.g., Lary et al., 2004;
Loyola, 2006]. Neural networks combine in a nonlinear way
different input data. However, their design is usually a
difficult task in view of all possible combinations involved
(number of hidden layers, choice of the input categories). In
addition to the choice of the structure of the neural network,
weights have also to be associated to each possible input
and hidden layer. These weights are chosen by the user as
well. In total, one obtains this way a given model, whose
performance is difficult to study from a theoretical point
of view.
[9] In this paper, we are concerned with the aggregation

of several models, some of them being possibly given by
different neural networks. We thus work at a metamodel
level. It is true that neural networks could be used at this
level too, to combine some base models in a nonlinear way.
However, we focus below on learning techniques that need
only one, or maybe two, user choices, as, e.g., the penal-
ization factor l of the ridge regression forecaster of section
2.3 or the learning rate h of the exponentiated gradient
forecaster of section 2.4. Having very few parameters to set
up is the only way for the procedure to be carried out in
some automatic manner by a computer.

2. Learning Methods as Ensemble Forecasters

2.1. Principle and Notation

[10] Ensemble forecasts are based on a set of models
(a multimodel ensemble)M = {1, . . ., N}. Each model may
have its own physical formulation, numerical formulation
and input data (see section 3). Its forecasts are compared
against measurements from a network of monitoring sta-
tions N = {1, . . ., S}. (The indexations of M and N are
made in an arbitrary order.) At station s 2 N and time index
t 2 {1, . . ., T} (the indexes of the days or of the hours), the
prediction xm,t

s of model m 2 M is compared to the
observation yt

s. In practice, the performance of model m
is assessed with a root mean square error including

observations from all stations and all time indexes (see
section 2.2.2).
[11] The general idea is to combine linearly the predic-

tions of the models to get a more accurate forecast. Aweight
is associated with each model of the ensemble so as to
produce an improved aggregated prediction byts = Pm=1

N vm,t
xm,t
s . The weights vm,t may also depend on the station s. In
this paper, we essentially focus on weights independent of
the stations so that the linear combination should still be
valid away from the stations. Otherwise, the ensemble
methods would compete with purely statistical models
whose results are very satisfactory at a low cost (e.g., Étude
et simulation de la qualité de l’air en Île-de-France (ESQUIF),
rapport final, 2001).

2.2. Sequential Aggregation of Models

[12] The weights of the combination depend of course on
the past predictions of each model and on the past obser-
vations. The formalized dependence is called the aggrega-
tion rule, and its result (the linear combination) is the
aggregated forecaster. It does not attempt to model the
evolutions of the concentrations but simply uses the models
as black boxes and aims at performing better than the best
of them. The aggregation rule does not rely on any
stochastic assumption on the evolution of the simulated or
observed concentrations. This paper is at a metalevel of
prediction: it explains how to get improved performance
given an ensemble of models whose preliminary construc-
tion is barely dealt with here. One may take any set of
models one trusts. Stochastic or statistical modeling might
also be used to construct one or several models; and the
aggregated rule, since it usually improves on the models,
will then benefit automatically from it.
[13] Compared to Mallet and Sportisse [2006a], one

contribution of this paper lies in the significant improve-
ments of the root mean square errors of the aggregated
forecasts. Another key contribution is that the learning
algorithms are theoretically grounded: explicit bounds on
their practical performance can be exhibited.
2.2.1. Definition of a Sequential Aggregation Rule
[14] At each time index t, a linear sequential aggregation

rule produces a weight vector vt = (v1,t, . . ., vN,t) 2 R
N based

on the past observations y1
s , . . ., yt�1

s (for all s 2 N ) and the
past predictions xm,1

s , . . ., xm,t�1
s (for all s 2 N and m 2M).

The final prediction at t is then obtained by linearly
combining the predictions of the models according to the
weights given by the components of the vector vt. More
precisely, the aggregated prediction for station s at time
index t equals

byst ¼ vt � xst ¼
XN
m¼1

vm;tx
s
m;t : ð1Þ

Convex sequential aggregation rules constrain the weight
vector vt to indicate a convex combination of N elements,
which means that

P
m=1
N vm,t = 1 with vm,t 	 0. In this case,

we use the notation vt = pt. When the weights are left
unconstrained and can be possibly any vector of RN, they
are denoted by vt = ut.
[15] Note that it is always possible to apply the aggrega-

tion rule per station. In this case, a weight vector vt
s is

produced for each station s.
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2.2.2. Assessment of the Quality of a Sequential
Aggregation Rule
[16] Not all stations are active at a given time index t. We

denote by N t 
 N the set of active stations on the network
N at time t. These are the stations s that monitored the
ozone concentrations yt

s. When we indicated above that
aggregation rules rely on past predictions and past obser-
vations, we of course meant at the active stations. We can
assess the quality of our strategies only on active stations.
This is why the measure of performance, the well-known
root mean square error (RMSE), of a rule A is defined as

RMSE Að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PT

t¼t0 jN tj

XT
t¼t0

X
s2N t

vt � xst � yst
� �2vuut ð2Þ

where t0 is the first time index when the evaluation starts
(hence 1  t0 < T), and jN tj is the cardinality (i.e., the
number of elements) of the set N t. One may choose t0 > 1
so that the time period {1, . . ., t0�1} should serve as a short
spin-up period for the aggregation rules. In the sequel, a
model will be said to be the best for a given set of
observations if it has the lowest RMSE.
2.2.3. Reference Performance Measures
[17] We indicate below some challenging performance

measures, in terms of RMSE, beyond which it is impossible
or difficult to go.
[18] The best performance is the following RMSE that no

forecaster, even knowing the observations beforehand, can
beat:

Bp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PT

t¼t0 N tj j

XT
t¼t0

min
ut2RN

X
s2N t

ut � xst � yst
� �2vuuuut : ð3Þ

It should be seen as the potential of sequential aggregation.
[19] We introduce three other reference performance

measures. The first one picks the best constant linear
combination in R

N over the period {t0, . . ., T}:

BRN ¼ min
u2RN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PT

t¼t0 N tj j

XT
t¼t0

X
s2N t

u � xst � yst
� �2vuut : ð4Þ

The second one corresponds to the best constant convex
combination. We denote by X the set of all vectors p
indicating convex combinations over N elements and define

BX ¼ min
p2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PT

t¼t0 N tj j

XT
t¼t0

X
s2N t

p � xst � yst
� �2vuut : ð5Þ

The third reference performance is that of the best model:

BM ¼ min
m¼1;...;N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PT

t¼t0 N tj j

XT
t¼t0

X
s2N t

xsm;t � yst


 �2vuut : ð6Þ

[20] Note that by definitions, in view of the inclusions
between the sets on which minima are taken, it always holds
that Bp  BRN  BX  BM. Comparing to convex or even
linear combinations of models is by far more challenging in
terms of RMSE than simply competing with respect to the
best model. This will be illustrated in section 4, devoted to
numerical results.
2.2.4. Minimization of the RMSE via Minimization of
the Regret
[21] Given a sequential aggregation rule A, and the

weight vectors vt it chose at time indexes t = 1, . . ., T, we
want to compare its RMSE to one of the reference perfor-
mance measures. To do so, we define LT(A) and LT(v) as the
cumulative square errors (over all time indexes, and not
only after t0) of the rule A and of the constant linear
combination v,

LT Að Þ ¼
XT
t¼1

X
s2N t

vt � xst � yst
� �2

; ð7Þ

LT vð Þ ¼
XT
t¼1

X
s2N t

v � xst � yst
� �2

: ð8Þ

The rules of interest, like the two discussed in sections 2.3
and 2.4, should ensure that the difference

RT vð Þ ¼ LT Að Þ � LT vð Þ ð9Þ

is small, i.e., o(T), for all v 2 W. The comparison set W is
R
N or X, depending whether the rule is a linear aggregation

rule or a convex aggregation rule.
[22] The difference RT(v) is termed the regret of the rule

A. The RMSE of A may be bounded in terms of the regret
as

RMSE Að Þð Þ2  inf
v2W

�
RMSE vð Þð Þ2þ 1PT

t¼t0 N tj j
RT vð Þ

þ 1PT
t¼t0 N tj j

Xt0
t¼1

v � xst � yst
� �2

: ð10Þ

This infimum is small: in the limit as T ! 1, it equals
BRN

2, if W = R
N, or BX

2 , if W = X . This is because the
regret is sublinear, as is guaranteed by the learning
techniques of interest: we refer to the bounds on the regret
proposed below in equations (12) and (19) and to the
comments that follow them. As a consequence, the averaged

regret term 1PT

t¼t0
N tj j

RT(v) tends to 0. And so does the third

term of the right-hand side of equation (10), which is a
constant divided by something of the order of T. Therefore, in
total, the RMSE of the aggregation ruleA tends to be at least
as small as the RMSE of the best constant linear or convex
combination.
[23] In other words, the machine learning algorithms of

interest here guarantee that, in the long run, the overall
performance of their aggregated forecasts is at least as good
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as the performance of the best constant combination. This
result holds whatever the sequence of observations and
predictions may be, and without any stochastic assumption.
This makes the methods of interest very efficient and very
robust. We now describe two such methods.

2.3. A First Aggregated Forecaster: Ridge Regression

2.3.1. Statement
[24] The ridge regression forecaster Rl is presented, for

instance, by Cesa-Bianchi and Lugosi [2006, section 11.7].
It is parameterized by l 	 0 and chooses u1 = (0, . . ., 0);
then, for t 	 2,

ut ¼ argmin
u2RN

l kuk22 þ
Xt�1
t0¼1

X
s2N t0

u � xst0 � yst0
� �224 35: ð11Þ

The interpretation is as follows. R0 is also called ‘‘follow-
the-leader forecaster’’ (in a least squares regression sense)
because it uses, at any time index t 	 2, the linear
combination that would have been the best over the past.
Rl is defined similarly, except that its definition includes a
penalization factor l kuk22 to keep the magnitude of the
chosen ut small and to have smoother variations from one ut
to the next ut+1.
2.3.2. Bound on the Regret
[25] An adaptation of the performance bound given by

Cesa-Bianchi and Lugosi [2006, section 11.7] is presented
byMallet et al. [2007a, section 12]. For all l > 0 and all u 2
R
N,

RT uð Þ  l
2
kuk22 þSC2

XN
i¼1

ln 1þ mi

l


 �
ð12Þ

where S is the total number of monitoring stations,

C ¼ max
t¼1;...;T

max
s2N t

ut � xst � yst
�� �� ð13Þ

and m1, . . ., mN are the eigenvalues of the matrix

XT
t¼1

X
s2N t

xst xst
� �T ¼ ATþ1 � lINwith the notation belowð Þ: ð14Þ

Since each ut depends in an awkward way on the
parameter l we cannot propose any theoretical optimal
parameter to minimize the upper bound; we simply
mention that it is obvious from the bound that l should
not be too large while also bounded away from 0;
however, as noted by Cesa-Bianchi and Lugosi [2006,
section 11.7], the typical order of magnitude of the bound is
O(ln T) as the mi = O(ST).
2.3.3. Implementation
[26] Parameters: penalization factor l 	 0
[27] Initialization: u1 = (0, . . ., 0), A1 = lIN
[28] For each time index t = 1, 2, . . ., T,
[29] 1. predict with ut;

[30] 2. compute, with the predictions xt
s,

Atþ1 ¼ At þ
X
s2N t

xst xst
� �T

; ð15Þ

[31] 3. get the observations yt
s, and compute

utþ1 ¼ ut � A�1tþ1

X
s2N t

ut � xst � yst
� �

xst

 !
ð16Þ

(where At+1
�1 denotes the pseudo-inverse of At+1 in case At+1

is not invertible).

2.4. A Second Aggregated Forecaster: Exponentiated
Gradient

2.4.1. Statement
[32] The basic version of the exponentiated gradient

forecaster Eh is presented, for instance, by Cesa-Bianchi
[1999]. It is parameterized by a learning rate h > 0 and
chooses p1 = (1/N, . . ., 1/N); then, for t 	 2, pt is defined as

pm;t ¼
exp �h

Pt�1
t0¼1
e‘m;t0
 �

PN
j¼1 exp �h

Pt�1
t0¼1
e‘j;t0
 � ð17Þ

for all m = 1, . . ., N, where

e‘m;t0 ¼ X
s2N t0

2 pt0 � xst0 � yst0
� �

xsm;t0 : ð18Þ

These pt all define convex combinations.
2.4.2. Bound on the Regret
[33] An adaptation of the performance bound given by

Cesa-Bianchi [1999] is presented by Mallet et al. [2007a,
section 3]. Denoting by L a bound on the je‘m,t0j (for all m
and t0), the regret of Eh against all convex combinations is
uniformly bounded as

sup
p2X

RT pð Þ  lnN

h
þ Th

2
L2 ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T lnN

p
¼ O

ffiffiffiffi
T

p
 �
; ð19Þ

where the last two equalities hold for the (theoretical)

optimal choice h* = L�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnNð Þ=T

p
.

2.5. Two Variants of the Previous Aggregated
Forecasters, Obtained by Windowing or Discounting

2.5.1. Windowing
[34] Windowing relies on the following heuristic. Recent

past indicates a trend on the current air quality but far away
past is not very informative. Windowing is a way to only
account for the most recent past. It formally consists in
using the results of at most t1 past dates to form the
prediction. This will be referred to by a superscript w(t1).
[35] For instance, the windowing version of ridge regres-

sion Rl
w(t1) is the same as Rl for times t  t1 + 1, but for t >

t1 + 1 it uses ut defined by

ut ¼ argmin
u2RN

l kuk22 þ
Xt�1

t0¼t�t1

X
s2N 0

t

u � xst0 � yst0
� �224 35; ð20Þ
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it differs from (11) only by the starting index of the first
summation [see Mallet et al., 2007a, section 14].
[36] The windowing version of exponentiated gradient

Ehw(t1) predicts as Eh for times t  t1 + 1, but for t > t1 + 1 it
uses pt defined by

pm;t ¼
exp �h

Pt�1
t0¼t�t1

e‘m;t0
 �
PN

j¼1 exp �h
Pt�1

t0¼t�t1
e‘j;t0
 � ð21Þ

for all m = 1, . . ., N, where e‘m,t0 is defined in equation (18).
Again, the differences to (17) concern the indexes of the
summations [see Mallet et al., 2007a, section 5]. A
drawback of this technique is that no nontrivial theoretical
bound can be exhibited, because no sublinear bound on the
regret can hold.
2.5.2. Discounting
[37] Discounting relies on the same heuristic. For the

farthest away past to have a limited influence, the discrep-
ancies with the observations are weighted according to
their closeness to the present (the closer, the higher

weight). The weights b = (bt)t 	 1 are given by a
decreasing sequence of positive numbers, which will be
referred to by a superscript b.
[38] For instance, the b-discounted version of ridge

regression Rl
b

chooses u1 = (0, . . ., 0) and for t 	 2,

ut ¼ argmin
u2RN

l kuk22 þ
Xt�1
t0¼1

1þ bt�t0ð Þ
X
s2N 0

t

u � xst0 � yst0
� �224 35

ð22Þ

[see Mallet et al., 2007a, section 13]. In our experiments,
we took bt�t0 = 100/(t�t0)2 for ridge regression.
[39] The b-discounted version of exponentiated gradi-

ent Eh
b

chooses p1 = (1/N, . . ., 1/N) and for t 	 2, pt is
defined as

pm;t ¼
exp � h=

ffiffi
t

p� �Pt�1
t0¼1 1þ bt�t0ð Þe‘m;t0
 �

PN
j¼1 exp � h=

ffiffi
t

p� �Pt�1
t0¼1 1þ bt�t0ð Þe‘j;t0
 � ð23Þ

for all m = 1, . . ., N, where e‘m,t0 is defined in equation (18).
See Mallet et al. [2007a, section 6], which provides a
theoretical performance bound for this forecaster under a
suitable choice of b. In our experiments, we took bt�t0 =
1/(t�t0)2 for the exponentiated gradient forecaster.

2.6. Remarks

2.6.1. Addition of Aggregated Forecasts in the
Ensemble
[40] All forecasters presented in this paper (with the

exception of their windowing versions) are competitive
with respect to all possible constant convex or linear
combinations of N base forecasting models. The parameter
N enters merely in a logarithmic way in most of the
performance bounds, so that, from a theoretical viewpoint,
some more base forecasting models can be added at a
negligible theoretical price, say N0 of them.

[41] For instance, the learning methods do not make use
of any stochastic assumption. But if one suspects that a
stochastic modeling would be useful, then a model exploit-
ing this can be added to the ensemble. Since it usually
improves on each of the individual models, the aggregated
forecaster, will then benefit from this modeling.
[42] The additional N0 models can also be given by

methods that are supported by the intuition and for which
no precise theoretical guarantee can be exhibited. Running
the learning algorithms then leads to an aggregated fore-
caster that exploits the intuitions that yielded the N0 new
models. At the same time, the theoretical performance
guarantees still hold. They even improve since all convex
or linear combinations over the first N models are combi-
nations over the N + N0 models.
[43] To illustrate this, we tested at some point the addition

of the aggregated forecasters R0
w(10), R0

w(20) and R0
w(30) to

the base 48 models. This forms the 51-model ensemble. The
description of the three additional forecasters follows from a
combination of sections 2.3 and 2.5.1: they predict with the
weights of the best constant linear combination, in the least
squares sense and over the learning window made of the 10,
20 or 30 previous dates. These three aggregated forecasters
were already introduced by Mallet and Sportisse [2006a]
under the notation ELSd (which stands for ensemble least
squares method per date). In the work of Mallet et al.
[2007a], they are denoted by ELS10, ELS20 and ELS30.
2.6.2. Per Station and Hourly Predictions
[44] Any learning algorithm may be applied for predic-

tions per station. In this case, each station s has its own
sequence of weights vt

s computed with the algorithm. The
algorithm is independently applied to each station (on each
singleton network N = {s}). The sole difference is that
when a station is unavailable on a given day, the learning
step is skipped and the last available weights at the station
are used for the next day. Some results are shown in
Appendix A.
[45] In case of hourly forecasts, an algorithm is indepen-

dently applied to each hour of the day. For instance, the
algorithm predicts the weights for the forecast at 15:00 UT
only on the basis of the observations and the predictions at
15:00 UT in the previous days. This strategy is expected to
be more efficient because one uses information from fore-
casts in comparable situations (e.g., with respect to the
emissions or to the height of the planetary boundary layer).
It already exhibited better performance in the work of
Mallet and Sportisse [2006a].

3. Experiment Setup

3.1. Ensemble Design

[46] We define a numerical model for ozone forecasting
by (1) its physical formulation, (2) its numerical discretiza-
tion, and, for convenience, (3) its input data.
[47] Eulerian chemistry-transport models all solve the

same given reactive-transport equation, but they include
different physical parameterizations to estimate the coeffi-
cients of the equation. Many alternative parameterizations
are available to compute a coefficient or a set of related
coefficients in the equation. For instance, a given model
includes a limited number of chemical species whose
reactions are described by a chemical mechanism. Several
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chemical mechanisms were developed for ozone [Gery et
al., 1989; Carter, 1990; Stockwell et al., 1990, 1997] and
incorporated in chemistry-transport models.
[48] Similarly, several numerical schemes were proposed,

e.g., to handle the strong concentration gradients in the
vicinity of emission sources, or to deal with the stiffness of
gas phase chemistry [see, e.g., Hundsdorfer and Verwer,
2003]. Other numerical issues are addressed in the models,
such as the distribution of the vertical layers, the space
steps, and the time steps. Consequently, every model has its
own numerical formulation.
[49] In addition, an air quality simulation involves a wide

set of input data: land data, chemical data, meteorological
fields, and emissions. There are alternative databases, and
the data is often uncertain, with uncertainties often ranging
from 30% to 100% [e.g., Hanna et al., 1998]. Hence the
modeler is doomed to make choices at that stage as well.
Thereafter, for convenience, we consider that the selected
input data (to a model) is actually part of the model. Thus a
model is also defined by a set of physical data.
[50] In this paper, our ensemble encompasses most sour-

ces of uncertainties. We rely on models built with different
physical parameterizations, numerical discretizations, and
data sets. The same ensemble as given by Mallet and
Sportisse [2006a] is used; see this paper for further details.
A similar ensemble was deeply analyzed by Mallet and
Sportisse [2006b]. The models are generated within the air
quality modeling system Polyphemus [Mallet et al., 2007b]
which is flexible enough to build models that behave in
drastically different manners; see Figure 1.

3.2. Simulations Over Europe

[51] The ensemble simulations cover 4 months, essential-
ly in summer 2001, over western Europe. In this paragraph,
we provide the main common characteristics of all simu-
lations. The domain is [10.25�W, 22.25�E] � [40.25�N,
56.75�N]. The horizontal resolution is 0.5�. The meteorolog-
ical fields are provided by the ECMWF (12-hour forecast
cycles starting from analyzed fields). Raw emissions are
retrieved in EMEP database and chemically processed
according to Middleton et al. [1990]. Biogenic emissions
are computed as in the work of Simpson et al. [1999]. The

boundary conditions are computed by Mozart 2 [Horowitz
et al., 2003].
[52] Among the changes in the models, those related to

the vertical diffusion parameterization [Louis, 1979; Troen
and Mahrt, 1986] and to the chemical mechanism (RADM
2 [Stockwell et al., 1990] and RACM [Stockwell et al.,
1997]) have the most prominent impacts on the ozone
concentrations.
[53] The resulting ensemble contains 48 models or mem-

bers. It shows a wide spread (Figure 1).

3.3. Individual Performance Measures of the Ensemble
Members

[54] Although the ensemble shows a wide spread, all
models bring useful information in the ensemble. For
instance, at a given date, the ozone peaks forecast over
Europe may vary strongly from one model to another, and
many models turn out to be the best in some region. This is
shown in Figure 2.
[55] The models are evaluated over the last 96 days of the

simulation. The first 30 days are excluded in the evaluation
because they are considered as a learning period for the
ensemble algorithms. With the notation of section 2.2.2, the
first forecast date with the ensemble methods is at t0 = 31.
[56] As in the work ofMallet and Sportisse [2006a], three

networks are used:
[57] 1. Network 1 is composed of 241 urban and regional

stations, primarily in France and Germany (116 and 81
stations respectively). It provides about 619 000 hourly
concentrations and 27 500 peaks.
[58] 2. Network 2 includes 85 EMEP stations (regional

stations distributed over Europe), with about 240 000 hourly
observations and 10 400 peaks.
[59] 3. Network 3 includes 356 urban and regional

stations in France. It provides 997 000 hourly measurements

Figure 2. Map of best model indexes. In each cell of the
domain, the color shows which model (marked with its
index, in [0, 47]) gives the best ozone peak forecast on
7 May 2001 at the closest station to the cell center. Note that
the most outer regions have almost no monitoring stations:
the best model can barely be identified there. Despite all,
there are enough stations to produce a highly fragmented
map in which a significant number of models deliver the
best forecast in some region. In addition, this map strongly
changes from one day to the other.

Figure 1. Ozone daily profiles of the 48 models. The
concentrations are in mg m�3 and are averaged over Europe
(at ground level) and over the 4 months of the simulation.
The ensemble shows a wide spread, even on these strongly
averaged hourly concentrations.
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and 42 000 peaks. Note that it includes most of the French
stations of network 1.
[60] The study is chiefly carried out with network 1

(including calibration of the parameters). The performance
of the learning methods on the two other networks is as
good as on network 1, even though all parameters are
determined from the optimization on network 1. See section
4.4.1 for more details on that and a summary of the results
for networks 2 and 3.
[61] The performance of the individual models is first

measured with the root mean square error (RMSE) over
network 1 and is presented in Figure 3. The best model (see
equation (6)) has a RMSE of BM = 22.43 mg m�3. This is
the reference performance to beat with the ensemble
methods.

4. Results

[62] For convenience, the unit of the RMSEs (mg m�3) is
omitted in this section. Unless mentioned, the RMSEs are
computed with the observations of network 1.
[63] As introduced in section 2.6.1, we consider two

ensembles: the 48-model ensemble and a 51-model ensem-

ble including R0
w(10), R0

w(20) and R0
w(30) as additional

models. These three aggregated models are added because
of their good performance (20.78, 20.27, and 20.18, respec-
tively) and because of their natural formulation, derived
from a least squares minimization. In sections 4.2 and 4.3,
all results are for daily peaks and on network 1.

4.1. Reference Performance Measures

[64] In order to assess the possible improvements of
ensemble forecasts, we provide the reference performance
measures of section 2.2.3 in Table 1. The most desirable
performance to reach on network 1 and for daily peaks is
Bp ’ 12. It is certainly impossible to fulfill this objective
because of the erratic time evolution of the associated
weights [Mallet and Sportisse, 2006a], but this demon-
strates the potential of combining the models forecasts.
[65] A more reasonable objective is to compete against

the best constant linear combination, since several aggre-
gated forecasters are guaranteed to have similar perfor-
mance in the long run. The reference performance for
daily peaks and on network 1 is as small as 19.24, which
is a strong improvement compared to the best-model per-
formance, BM = 22.43.
[66] More generally, Table 1 shows that the reference

RMSEs of convex combinations are roughly 5% smaller
(10% for hourly concentrations) than those of the best
models, and that an additional 10% improvement is
obtained by considering all linear combinations in R

N.

4.2. Performance of Aggregated Forecasters

[67] The performance of several aggregated forecasters is
shown in Table 2. Note that the parameters of the algorithms
were tuned (offline) on network 1 to get the best perfor-
mance [Mallet et al., 2007a]. Section 4.4.1 will show that
these tunings are robust and seem to be valid for a wide
range of situations. On the basis of our experience, the
methods are not too sensitive to the parameters, and optimal
parameters (e.g., those proposed here) can be applied to
different networks, different periods of time, different target
concentrations and even different ensembles. Note also that
the theoretical guarantees hold for any value of the param-
eters (e.g., any penalization factor l > 0, in the ridge
regression algorithm).
[68] Table 2 and the results of many other learning

algorithms [Mallet et al., 2007a] indicate that ridge regres-
sion-type aggregated forecasters show the best performance.
Several algorithms get results less than or close to the best
constant convex combination (BX = 21.45), but none except
ridge regression may compete against the best constant

linear combination (BRN = 19.24). The use of the aggregated

forecaster R1000

b

results in a RMSE of 19.45 and thus, the
theoretical guarantee of performing similarly, in the long

Figure 3. Root mean square errors (RMSE, in mg m�3) for
the 48 members in the ensemble. The error is computed
with all ozone peak observations of network 1 during the
last 96 days of the simulations. Here the models are sorted
according to their RMSE.

Table 1. Reference Performance Measures of Section 2.2.3 Over

the Last 96 Simulated Daysa

Network Bp BRN BX BM
Daily Peaks

Network 1 11.99 19.24 21.45 22.43
Network 2 8.47 18.16 20.91 21.90
Network 3 12.46 20.26 22.60 23.87

Hourly Concentrations
Network 1 14.88 22.80 24.81 26.68
Network 2 12.03 23.52 24.51 25.98
Network 3 15.32 23.19 26.28 28.45

aRMSE, mg m�3.

Table 2. Performance (RMSE) of the Aggregated Forecasters for

Ozone Daily Peaks Over the Last 96 Simulated Days on Network 1a

BRN BX BM R0
w(10) R0

w(20) R0
w(30)

19.24 21.45 22.43 20.78 20.27 20.18

R100 E2�10�5 R100
w(45) E2�10�5w(83) R1000

b E1.2�10�4
b

20.77 21.47 20.03 21.37 19.45 21.31

aThe ensemble is made of the 48 base forecasting models.
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run, to the best constant linear combination is essentially
achieved.
[69] It is noteworthy that ridge regression is of a similar

nature as the least squares methods. However, the algorithm
benefits from the penalization factor driven by l > 0; taking
l = 0 leads to worse performance. Including R0

w(10), R0
w(20),

and R0
w(30) in the ensemble leads to strong improvements in

the performance of several algorithms; see the technical
report [Mallet et al., 2007a] for further details. This shows
that the aggregated forecasters are generally driven by the
best performance in the ensemble. Adding aggregated
predictions to the ensemble, as was suggested by section
2.6.1, is consequently a meaningful and efficient strategy.
Nevertheless, this does not apply to ridge regression with
discount which has a slightly better RMSE with the base 48-
model ensemble. In this case, its RMSE is about 3 mg m�3

lower than the best model, which is a strong improvement:
in the work of Mallet and Sportisse [2006a], the decrease of
the RMSE was about 2 mg m�3, and without theoretical
bounds on the method performance.

[70] A drawback of ridge regression might be its lack of
constraints on the weights (and thus, the lack of interpret-
ability of the obtained weights). In contrast, several algo-
rithms produce convex weight vectors. Such weights may
be applied far from the stations more safely than the uncon-
strained weights. The combined predictions will always fall
in the envelop of the ensemble predictions, which avoids
unrealistic concentrations. For instance, with the 48-model
ensemble, the exponentiated-gradient aggregated forecaster
performs as well as the best constant convex combination
(21.47, while BX = 21.45) which is of course better than the
best model (BM = 22.43). The weights computed by E2�10�5
are shown in Figure 4.
[71] In section 4.3, we focus on ridge regression with

discount. For further analysis of all results, please refer to
Appendix A or to Mallet et al. [2007a].

4.3. Ridge Regression With Discount

4.3.1. Further Results
[72] The weights computed by ridge regression with

discount are shown in Figure 5. A key feature is the high
number of contributing models: significant weights are
associated to many models. This is a rather clear difference
with most of the other aggregated forecasters (refer to
Mallet et al. [2007a] in order to consult the time-evolution
of the weights of all algorithms).
[73] The correlation (computed with all observations at

once, in the last 96 days) between observations and simu-
lated data is improved: the best model (with respect to the
RMSE) has a correlation of 0.78 while the aggregated

forecaster R1000

b

predicts with a correlation of 0.84. The
bias factor, defined as

1PT
t¼t0 N tj j

XT
t¼t0

X
s2N t

vt � xst
yst

; ð24Þ

is 1.06 for the best model and 1.03 for R1000

b

.
4.3.2. Robustness
[74] The theory brings guarantees on the performance in

the long run. This means that the ridge regression algorithm
(with or without discount) is meant to be robust, which is an
important feature in day-to-day operational forecasts. In
addition to global performance, one concern is the perfor-

Figure 4. Weights associated by E2�10�5 to the 48 models
against the time indexes (i.e., days). Because of the
exponentiated-gradient formulation, the weights are positive
and sum up to 1. Several models contribute to the linear
combination, and the weight may vary quickly, even at the
end of the time period.

Figure 5. Weights associated by R1000
b

to the 48 models
against the time indexes (i.e., days). The forecaster
attributes significant weights to a large set of models.

Figure 6. RMSE of R1000
b

(continuous line) and of the
best model (dotted line), against the day (or time index).
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mance at each single station and on each single day. We
need robust aggregation methods that produce reasonable
forecasts at all stations and on all days. We must avoid any
method which would have a good overall performance but
which would show disastrous performance at some stations
or on some days.
[75] In practice, we noticed that the aggregated forecast-

ers behave very well not only on average but also at most

stations and on most days; R1000

b

even predicts better than
the (overall) best model for 73% of all observations. In

Figure 6, the aggregated forecaster R1000

b

shows better
performance than this best model for most days (83% in the
last 96 days). There is no day when it has an unreasonably
high RMSE compared to the best model. Interestingly
enough, the converse is not true: for some days, the RMSE

of the best model is much higher than the one of R1000

b

. In

Figure 7, R1000

b

performs better than the (overall) best
model at 223 stations (93% of the 241 stations). It performs
better than the best model per station (with respect to the
RMSE at the individual station) at 167 stations (70% of the
stations). Its performance is always better than the worst
model per station: a nontrivial fact, since the weights for the
aggregation are unconstrained, as is illustrated, e.g., by
Figure 5. One can clearly conclude from these tests that this
learning method is robust.
4.3.3. Do Statistics Miss Extreme Events?
[76] A usual criticism against statistical methods is that

they may be efficient on average but they miss the most
important events. In daily air quality forecasts, the most
important events to forecast are the highest pollution peaks.
[77] The methods we apply in this paper are not subject to

the same limitations as purely statistical methods because
they rely on the physical models. The weights are computed
with learning methods, but the forecasts are still carried
out by the models. In addition, the methods are respon-
sive enough to allow quick variations of the weights (see
Figures 4 and 5).
[78] To check that an aggregated model still has good

skills in predicting extreme events, we count the number of

improved forecasts (with respect to the best model) for the
highest observed concentrations. We apply this to the
discounted version of ridge regression, R1000

b

, whose
predictions are denoted byts. If the predictions of the overall
best model are xm,t

s (and yt
s are the corresponding

observations), then we compute the score

F oi;oiþ1½ � ¼
jf t; sð Þ such that jbyst � yst j < jxsm;t � yst j and yst 2 oi; oiþ1½ �gj

jf t; sð Þ such that yst 2 oi; oiþ1½ �gj
ð25Þ

for a set of concentration intervals [oi, oi+1] that cover all
observed daily peaks. A perfect score is F[. . .] = 1 (all

predictions of R1000

b

better than the best model) and the
worst score is F[. . .] = 0. Figure 8 plots this score. In this
Figure 8, the number of observations considered to draw
each bar varies of course with the bar; for instance, the

Figure 7. RMSE against the station index (for 241 stations). In green, R1000
b

; in blue, the best model
(over all stations); in black, the best model and the worst model for the station.

Figure 8. Frequency of improved forecast against the

observed concentration, for R1000
b

. The frequency F[oi
,oi+1] is

computed as in equation (25). This illustrates that the
discounted version of ridge regression is efficient on extreme

events. (Remember from section 4.3.2 that R1000

b

predicts
better than the best model for 73% of all observations, that
is, F[0,1) = 0.73.)
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leftmost and rightmost bars are for extreme events, hence
with few observations. Starting from the rightmost bar and
moving to the left, the number of observations per bar is 4,
8, 11, 26, 60, and so on, and the histogram means that first,
the four highest observations are better predicted with
learning than with the best model; second, that seven of the
eight following observations are better predicted; and so on.
Similar results are obtained with the other learning methods.
The conclusion is that the extreme events are well caught by
our approach.
4.3.4. Influence of the Number of Models
[79] The 48 models are sorted as by Mallet and Sportisse

[2006a]: herein referred to as the default order. Note this
order has no link with the performance of the models.
48 ensembles are then built: the first ensemble only includes
the first model, the second ensemble includes the first two
models, the third ensemble includes the first three models,

and so on. R1000

b

is applied to each ensemble in order to test
the influence of the number of models on the performance.
[80] Since this experiment depends on the inclusion order,

two additional orders are tested: (1) from the best model
(lowest RMSE) to the worst model (highest RMSE), and
(2) from the worst model to the best model. The results are
shown in Figure 9.
[81] The performance of R1000

b

increases with the number
of models. However, the improvement brought by one
model rapidly decreases as the ensemble size increases.
There is no obvious relation between the performance
increase and the individual performance of the models.

[82] Note that R1000

b

applied to the first model alone
shows a lower RMSE than this first model (see Table 3),
which indicates that this aggregated forecaster enjoys a
property of automatic bias correction. Here, there is only
one weight, associated with the single model, and it can
indeed be interpreted as multiplicative bias correction factor.

4.4. Other Results

4.4.1. Application to Networks 2 and 3
[83] All results shown in the previous sections were

presented for network 1. The two other networks are used
for validation: in our study process, the algorithms were

intensively analyzed and even tuned on network 1, and they
were subsequently applied to networks 2 and 3 without
specific optimization. This means that we directly use for
them the parameters optimal for network 1. (The precise
study of Mallet et al. [2007a] shows, by the way, that these
offline optimal parameters for network 1 are usually larger
than those prescribed by theory, leading to faster learning
rates and a greater ability for the weight vectors to change
when needed, as is illustrated, for instance, on Figure 4.)
[84] The methods achieve good performance on the two

other networks; the results of Table 4 show in particular that
the reference performance measures BX and BRN are almost
achieved again. All in all, this shows that the methods can
be successfully applied to new data sets, demonstrating
some kind of robustness.
[85] We do not provide satisfactory automatic tuning

rules for the parameters yet. Theoretical optimal tuning
rules for exponentiated gradient were proposed in the
machine learning literature [Mallet et al., 2007a, section
4] but they lead to lower performance. However, one may
note that most of the proposed aggregation rules only
depend on one or two learning parameters, to be set by
the user. The results, though sensitive to tuning, are always
better than the ones of the best model, even with the worst
possible choices of the parameters. This is contrast to
statistical methods, which require several parameters
depending on underlying distributions to be estimated on
data, or to other machine learning techniques, like neural
networks, where the user has to choose the structure of the
network and the values of several weights.
4.4.2. Results on Hourly Forecasts
[86] The methods are also used for hourly ozone fore-

casts; see section 2.6.2. Just like in the previous section,
only the leading aggregated forecasters for network 1 and
daily peaks are applied. Their parameters were tuned on
network 1 and for daily peaks, but they perform well for
hourly concentrations and on all networks. The scores are
summarized in Table 5.
[87] The aggregated forecasters are more efficient for

hourly concentrations than for the daily peaks: the improve-
ments with respect to the best model are stronger (decrease
of the RMSE over 4.5 mg m�3 on average). The reference

performance measure BRN is beaten by R1000

b

on the three
networks. Since the physical models predict better the daily
peaks than the hourly concentrations, one might state that
the machine learning methods compensate for stronger
physical limitations in the hourly predictions case.

5. Conclusion

[88] On the basis of ensemble simulations generated with
the Polyphemus modeling system, machine learning algo-
rithms prove to be efficient in forecasting ozone concen-

Table 3. Performance (RMSE) of R1000

b

Applied to a Single

Modela

Order First Model RMSE R1000
b

RMSE

Default order 24.01 22.43
Increasing RMSE 22.43 21.66
Decreasing RMSE 35.79 24.78

aThe first models of the ensembles defined in section 4.3.4.

Figure 9. RMSE of R1000

b

against the number of models
in the ensemble. Three sets of ensembles with an increasing
number of models are built. They follow the default order
[Mallet and Sportisse, 2006a], the increasing RMSE order,
and the decreasing RMSE order.
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trations by sequential aggregation of models. This conclu-
sion applies to 1-day forecasts of ozone hourly concentra-
tions and daily peaks. In short, the results improve the
previous work [Mallet and Sportisse, 2006a] with respect to
the performance and the mathematical framework. In this
study, the learning algorithms always turn out to be better
than the best model in the ensemble and they even compete
with the best (constant and unconstrained) linear combina-
tion of models. Meanwhile the algorithms come with
theoretical bounds that guarantee high-quality forecasts in
the long run. In addition, our analysis clearly shows the
robustness of the approach: good performance on new
observation sets, no unreasonably high RMSE per station
or per date compared to the best model, improvements
almost in all regions, and for a majority of dates. It is
noteworthy that the learning methods behave very well on
the extreme events. Because of all these desirable properties,
the methods are very relevant for operational forecasting.
[89] This study comes with several applicable algorithms

for air pollution. Although they rely on well-known meth-
ods from machine learning, they were adapted, primarily to
account for the presence of multiple monitoring stations and for
past observations to have a relevance that decreases with time.
[90] Next developments may concentrate on the spatial

validity of the aggregation. Furthermore, the sequential
selection of (small subsets of) models in the ensemble
may also help improve the results or at least decrease the
computational load. The performance of the sequential
aggregation should be compared with classical data assim-
ilation (optimal interpolation, Kalman filtering, variational
assimilation). For instance, while classical data assimilation
often faces a limited impact in time, the learning methods
could be more efficient, e.g., for 2-day forecasts.

Appendix A

[91] We provided in the main body of this paper a brief
overview of the empirical analysis of two families of
machine learning forecasting methods. Further details on
the analysis, as well as a discussion of other methods,

follow. All of them are included in the technical report
[Mallet et al., 2007a], which is available at http://
www.dma.ens.fr/edition/publis/2007/resu0708.html.

A1. Per Station Predictions

[92] Any learning algorithm may be applied for predic-
tions per station. In this case, each station s has its own
sequence of weights vt

s computed with the algorithm. The
algorithm is independently applied to each station (on each
singleton network N = {s}). The sole difference is that
when a station is unavailable on a given day, the learning
step is skipped and the last available weights at that station
are used for the next day. Also, the additional forecasts
R0

w(10), R0
w(20), and R0

w(30) cannot be computed and there-
fore added to the ensemble for per station predictions: the
least squares problems associated with R0

w(10), R0
w(20) and

R0
w(30) are underdetermined.
[93] We kept the same learning parameters as those used

in the main body of the paper. The performance is still
computed with the global RMSE defined by (2). It is shown
in Table A1 for daily peaks and in Table A2 for hourly
concentrations, and should be compared to, respectively,
Tables 4 and 5. Except for network 1 and daily predictions,
the RMSEs usually improve when the aggregation rules are
run station by station.
[94] We do not provide further details on the predictions

per station as they are not the main objective of this paper;
they are essentially provided for reference.

A2. Further Learning Methods

[95] We report briefly in this section the references and
results of other learning methods. We only describe in detail
the gradient descent forecasters because they showed prom-
ising results on networks and settings not reported here.

A2.1. Gradient Descent Forecasters

[96] The simplest version of gradient descent has already
been implemented and studied by Mallet and Sportisse
[2006a]. It is parameterized by h > 0 and is referred to

Table 5. RMSE of Leading Methods on the Three Networks for

Hourly Forecasts

BM E2�10�5 R100 R1000
b R100

w(45)

Network 1 26.68 24.31 22.69 22.02 22.32
Network 2 25.98 24.67 23.53 22.82 23.29
Network 3 28.45 26.01 22.82 22.27 22.54

Table A1. RMSE of Leading Methods on the Three Networks for

Daily Peaks and per Station Predictions

E2�10�5 R100 R1000

b R100
w(45)

Network 1 23.26 19.72 19.73 19.59
Network 2 22.50 17.44 17.43 17.83
Network 3 24.42 19.73 19.72 19.57

Table 4. RMSE of the Leading Methods on the Three Networksa

E2�10�5 R100 R1000
b R100

w(45) R0
w(10) R0

w(20) R0
w(30) BM

48-Model Ensemble
Network 1 21.47 20.77 19.45 20.03 20.78 20.27 20.18 22.43
Network 2 21.05 19.12 18.12 18.91 19.50 19.08 18.93 21.90
Network 3 24.12 21.92 20.88 21.10 21.95 21.31 21.20 23.87

E3�10�5 R106 R1000
b R1000

w(45)

51-Model Ensemble
Network 1 19.77 19.92 19.62 19.83
Network 2 18.65 18.96 18.26 18.62
Network 3 21.55 20.74 20.70 20.82

aWith the 48 base models only (upper part), with R0
w(10), R0

w(20), and R0
w(30) in addition to the 48 base models (lower part).
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below as Gh. It starts with an arbitrary weight vector u1, we
take for simplicity and for efficiency u1 = (1/N, . . ., 1/N).
Then, for t 	 1, the update is

utþ1 ¼ ut � he‘t ¼ ut � h
X
s2N t

2 ut � xst � yst
� �

xst : ðA1Þ

This forecaster is competitive with respect to BRN, its regret
being bounded as follows. For all h > 0 and all u 2 R

N,

RT uð Þ  ku� u1k22
2h

þ 2hN SCBð Þ2T ¼ O
ffiffiffiffi
T

p
 �
ðA2Þ

with the notation C of section 2.3, the bound B 	 jxt,ms j for
all m, t, and s, and for a choice h = O(1/

ffiffiffiffi
T

p
). See Mallet et

al. [2007a, section 7] and Cesa-Bianchi [1999] for more
details.
[97] The previous gradient descent forecaster is uncon-

strained. A variation with an additional projection step (e.g.,
on the set X of all convex combinations) was considered by
Zinkevich [2003], leading to the forecaster referred to below
as Zh (with parameter h > 0). For t 	 1, the update is

ptþ1 ¼ PX pt � he‘t
 �
ðA3Þ

¼ PX pt � h
X
s2N t

2 pt � xst � yst
� �

xst

 !
ðA4Þ

where PX denotes the projection onto the set X of convex
combinations. This forecaster is competitive with respect to
BX since its regret is uniformly bounded as

sup
p2X

RT pð Þ  1

h
þ 2hN SCBð Þ2T ¼ O

ffiffiffiffi
T

p
 �
ðA5Þ

for a choice h = O(1/
ffiffiffiffi
T

p
). See Mallet et al. [2007a,

section 10] and Zinkevich [2003] for more details.

A2.2. Overview of Ten Other Forecasters

[98] We do not describe them in detail and we only
present Table A3 to summarize all previously introduced
forecasters and the new ones. We indicate also the reference
performance to which each aggregated forecaster is guar-
anteed to be close, as well as the bound on the regret to be
substituted into (10) to control the discrepancy between the
reference performance and the performance of the aggre-
gated forecaster. The reader interested in the mathematical
details may take a look at our technical report [Mallet et al.,
2007a] to have more information. The column ‘‘Section’’
refers to a section of this report. Only the algorithms of the
first half of the table were described above.
A2.3. Automatic Bias Correction

[99] This trick, introduced by Kivinen and Warmuth
[1997], transforms an aggregated forecaster A proposing
convex combinations pt into an aggregated forecaster A0
proposing linear combinations ut. More precisely, A0
proposes predictions u1, u2, . . . in the ‘1 ball of a given radius
U > 0 centered at the origin, which we denote by Bk�k1(0,U )

R
N. For the converted algorithm, we have a bound on the

regret with respect to all elements of Bk�k1(0, U ). The
interest of this trick is to correct biases in an automatic
way since the weights ut do not necessarily sum up to 1.
(For example, if all models propose predictions that are
larger than the actual observation, the aggregated forecaster
has a chance not to predict too high a value.)
[100] Formally, the conversion algorithm is as follows.

We take U > 0, denote zt
s = (Uxt

s, �Uxts), and let the original

Table A2. RMSE of Leading Methods for Hourly Forecasts and

per Station Predictions

E2�10�5 R100 R1000

b R100
w(45)

Network 1 23.16 19.91 19.98 20.04
Network 2 23.34 18.41 18.37 18.58
Network 3 24.43 20.12 20.30 20.20

Table A3. Overview of the Considered Aggregated Forecastersa

Section Notation Name Reference Theo. bound Parameters RMSE

12 Rl Ridge regression R
N O(ln T) R100 20.77

3 Eh Exponentiated gradient X O(
ffiffiffiffi
T

p
) E2�10�5 21.47

14 Rl
w(t1) Windowing ridge regression R

N - R100
w(45) 20.03

5 Ehw(t1) Windowing exponentiated gradient X - E2�10�5w(83) 21.37

13 Rl

b

Discounted ridge regression R
N o(T) R1000

b
19.45

6 Ehb Discounted exponentiated gradient X o(T) E1.2�10�4
b

21.31

10 Zh Projected gradient descent X O(
ffiffiffiffi
T

p
) Z10�6 21.28

7 Gh Gradient descent R
N O(

ffiffiffiffi
T

p
) G4.5�10�9 21.56

17 Fa,h
0 Gradient fixed-share X O(

ffiffiffiffi
T

p
) F 0.02, 2.5�10�5

0 21.35

4 Ea,b Adaptive exponentiated gradient X O(
ffiffiffiffi
T

p
) E100, 1 21.48

9 Pp
0 Gradient polynomially weighted average X O(

ffiffiffiffi
T

p
) P14

0 21.49

19 Ob Online Newton step X O(ln T) O6�10�7 21.51

16 Fa,h Fixed-share M O(
ffiffiffiffi
T

p
) F 0.15, 5�10�5 21.89

1 Ah Exponentially weighted average M O(1) A3�10�6 22.46

15 Rl
vaw Nonlinear ridge regression R

N O(ln T) R106
vaw 22.90

2 Mh Mixture X O(ln T) M10�3 23.1

8 Pp Polynomially weighted average M O(
ffiffiffiffi
T

p
) P1.2 23.20

11 Ph Prod X O(
ffiffiffiffi
T

p
) P5.5�10�7 23.33

aWe indicate their reference performance measures (BRN, BX , or BM; see section 2.2.3), their theoretical regret bounds (if available), the section of the
technical report where more information can be found, the parameters we used, and the results obtained for prediction of daily peaks on network 1.

D05307 MALLET ET AL.: OZONE ENSEMBLES AND MACHINE LEARNING

12 of 13

D05307



aggregated forecaster A be fed with the zt
s (it therefore

behaves as if there were 2N models); it outputs predictions
q1, q2, . . . in the set of all convex combinations over 2N
elements. The ‘‘extended’’ weights ut of A0 are defined as
follows. For all j = 1, . . ., N,

uj;t ¼ U qj;t � qjþN ;t

� �
; ðA6Þ

these ut satisfy that for all stations s,

ut � xst ¼ qt � zst : ðA7Þ

[101] Now, it is easy to see that all u 2 Bk�k1(0, U ) may be
represented in the following sense by a convex combination
q of 2N elements,

q � zst ¼ u � xst ðA8Þ

for all t and s. Equations (A7) and (A8) thus show that the
regret of A0 against the elements of Bk�k1(0, U ) is smaller
than about U times the regret of A against all convex
combinations in X .
[102] SeeMallet et al. [2007a, section 20] for more details

and more precise bounds. The experiments reported there
show that U = 0.99 is sometimes an interesting value for
some aggregated forecasters A, in accordance to the auto-
matic bias correction alluded at above. However, this
procedure seldom performs better than the aggregated
forecaster alone. We mention it here for the sake of
completeness and we plan to further study this ability of
automatic bias correction. We recall that another occurrence
of an ability of automatic bias correction can be found at the
end of section 4.3.4.
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